
271

JOURNAL OF APPLIED BEHAVIOR ANALYSIS 2003, 36, 271–284 NUMBER 2 (SUMMER 2003)

CREATING A PORTABLE DATA-COLLECTION SYSTEM WITH
MICROSOFTt EMBEDDED VISUAL TOOLS FOR

THE POCKET PC

MARK R. DIXON

SOUTHERN ILLINOIS UNIVERSITY

This paper describes an overview and illustrative example for creating a portable data-
collection system using Microsoftt Embedded Visual Tools for the Pocket PC. A description
of the Visual Basict programming language is given, along with examples of computer
code procedures for developing data-collection software. Program specifications, strategies
for customizing the collection system, and troubleshooting tips are also provided.

DESCRIPTORS: data collection, data analysis, computer, Visual Basict, software,
Pocket PC

There have been numerous attempts to
reduce the amount of time and effort re-
quired to collect behavioral data. Methods
have included using alarms or timers to
prompt recorders (Sulzer-Azaroff & Mayer,
1991), videotaping sessions for post hoc re-
cording (Miltenberger, Rapp, & Long,
1999), and purchasing a computerized sys-
tem for automated recording (Bellack &
Hersen, 1998). As technology advances and
prices continue to decline, computerized sys-
tems are being developed for a greater variety
of applications.

There are a number of reasons why one
might wish to consider a computerized sys-
tem of recording over traditional pencil and
paper or other low-tech forms of collection.
First, pencil-and-paper data collection is of-
ten time consuming. Requiring staff to write
out descriptions of contingencies or remem-
ber the specific moment to record an in-
stance of behavior are difficult endeavors

This paper was made possible in part by additional
equipment funding provided by the College of Edu-
cation and Human Services, Southern Illinois Univer-
sity–Carbondale. Special thanks to Henry Roane for
his continued technical assistance during the editorial
process of this paper.

Address correspondence to Mark R. Dixon, Behav-
ior Analysis and Therapy Program, Rehabilitation In-
stitute, Southern Illinois University, Carbondale, Illi-
nois 62901 (e-mail: mdixon@siu.edu).

with high response costs (Emerson, Reeves,
& Felce, 2000). Likewise, traditional systems
are prone to problems such as incomplete-
ness, inaccuracies, and poor reliability (Bel-
lack & Hersen, 1998).

Computer-based data-collection methods
represent a useful advancement in the area
of observational data collection. Kahng and
Iwata (1998) reviewed many of the existing
forms of behaviorally oriented computerized
data-collection systems that have claimed to
ease the job of data collection for the service
provider and provide more accuracy and re-
liability for the researcher. Although the sys-
tems described by Kahng and Iwata offer the
consumer a great advantage over pencil-and-
paper systems, they have some limitations.
First, although 3 of the 15 systems reviewed
were available free, others cost from $50 to
$1,740 plus the purchase of the necessary
hardware, which may preclude their use in
some situations. A second and potentially
more problematic limitation is that the sys-
tems reviewed are static. To illustrate, when
a computerized data-collection system is
purchased, the consumer is investing in an
existing technology and software that may
meet the majority of their data-collection
needs (e.g., frequency or interval recording).
However, if unusual circumstances develop
that require a novel type of data collection

272 MARK R. DIXON

(e.g., collecting data in discrete trials), a
standardized system may not be adaptable.
Third, the system may operate on obsolete
technology. For example, all of the programs
reviewed by Kahng and Iwata run in DOS
or Microsoft Windows. Since the time of
that publication, Microsoft has introduced
four newer versions of its operating system
(98, 2000, ME, and XP). In such cases, a
program’s operating system may not be com-
patible with more recent software (e.g.,
word-processing software) and may require
the consumer to retrofit a computer for the
data-collection software, and then perhaps to
transfer the data into more contemporary
programs for other functions (e.g., analysis
or graphing).

A potential solution to the limitations of
preexisting computerized data-collection sys-
tems is to develop a computerized data-col-
lection system that is individualized to the
user’s specific needs. If a consumer can de-
velop, modify, and expand his or her own
data-collection system, it should yield great-
er utility than other existing methods of col-
lection.

Designing Software on the Pocket PC

A Pocket PC is a small handheld com-
puterized device that measures roughly 8 cm
by 12 cm and costs $150 to $600. The ma-
chines are available from a number of man-
ufacturers (e.g., Casio, Dell, Hewlett-Pack-
ard), and all use the Microsoft Windows CE
operating system. Windows CE is Micro-
soft’s portable version of the well-known
Windows 98, 2000, XP operating systems
and accommodates modified versions of
many familiar Microsoft desktop software
programs such as Word, Excel, and Outlook.
Assuming a user has a Microsoft-based desk-
top computer, having similar programs on a
portable device such as the Pocket PC allows
easy communication and data transfer be-
tween devices.

Of all the software-sharing capabilities be-

tween the desktop and Pocket PC device, the
most practical for developing a data-collec-
tion system is Microsoft’s Embedded Visual
Tools (eVT). The eVT software allows a rel-
atively novice computer programmer to de-
sign his or her own software on a desktop
computer and then download and run it on
a Pocket PC. Furthermore, this software is
available for free download at http://www.
microsoft.com/mobile/developer/downloads/
default.asp.

According to Microsoft, the system re-
quirements for eVT include a computer
with Pentium processor at 150 MHz or
higher, a recent version of Microsoft Win-
dows (Windows 98 2nd ed., Windows NT
Version 4.0 with Service Pack 5 or later,
Windows 2000, or Windows XP profession-
al ed.), 48 MB of RAM, hard-drive space of
360 MB for minimum installation (720 MB
for complete installation), a CD-ROM
drive, a VGA or higher resolution monitor,
and a mouse or compatible pointing device.
This author strongly recommends the fol-
lowing upgrades for smoother operation: a
Pentium III or better processor, Windows
2000, XP professional ed. or higher, 128
MG of RAM, and 1 gigabyte of hard-drive
space.

Most currently available Pocket PCs will
meet the minimum requirements for pro-
gramming in eVT, which include 32 MG of
RAM and the Windows CE 2.0 or higher
operating system. Newer operating systems
may require an additional package of files
(called a System Development Kit or SDK)
to be downloaded at the Microsoft Web site
noted above.

Once the eVT software is downloaded
and installed on a compatible system, the
user can begin programming. It is assumed
that the user will have previously installed
the communication software package includ-
ed with his or her specific brand of Pocket
PC.

273PORTABLE DATA SYSTEM

Figure 1. Graphic display of the PDA emulator.

PDA Emulator
For users who are hesitant about the via-

bility of a self-created data-collection pro-
gram, the eVT download also includes an
emulator or virtual PDA (personal digital as-
sistant) component. The PDA emulator al-
lows the user to test the program before
downloading it to an actual Pocket PC. This
function also permits data collection using
the emulator alone, although the user would
require a portable computer to run the em-
ulator. Figure 1 shows a graphic display of
the PDA emulator.

To explore the emulator prior to program-
ming, the user should click on the ‘‘start’’
button in the bottom left corner of the
screen, click on ‘‘Microsoft Windows Plat-
form SDK for Pocket PC,’’ and finally on
‘‘Desktop Pocket PC Emulation.’’ A blue

image (7.6 cm by 12.7 cm) will appear on
the screen. Another ‘‘start’’ button is located
on the emulator to guide navigation within
the emulator. It should be noted that the
PDA emulator is not compatible with some
versions of Windows (see Table 1 for de-
tails). When the eVT program is being
downloaded, users who do not have systems
that are compatible with the PDA emulator
will be prompted to continue installation al-
though the emulator will not work. Con-
tinuing installation allows all other compo-
nents of eVT to work properly, even though
the emulator has not been installed.

Layout of the eVT Interface

To use the emulator during actual pro-
gramming, the user must change the drop-
down tool menu in embedded Visual Basic

274 MARK R. DIXON

Table 1
A Summary of Possible Problems and Possible Solutions to Programming in eVT

Problem Possible solutions

Software is unable to transfer over to
Pocket PC

Check communications cable, check to make sure Pocket PC is
placed firmly in docking cradle, reboot system

Software takes unusually long time to
compile onto Pocket PC

Free additional memory space on Pocket PC, upgrade version of
Microsoft CE (if needed), free desktop space

eVT takes long time to download
from Web site

Use a non-dial-up modem (cable or DSL), request a CD copy
from Microsoft

PDA emulator does not work or can-
not be found

Make sure you are using Windows 2000 Professional or XP profes-
sional; Windows 98 or ME are not compatible

Data output file cannot be found Check ‘‘My Device’’ directory on PDA, or use ‘‘Find Files’’ option
on desktop if using emulator

User makes errors when recording
data

Create a command button named ‘‘Error,’’ have user click to note
error, and link response to data file

Programmer wants to note time and
date

Add the code ‘‘File1.LinePrint Time & Date’’ under a command
button

Programmer wants to terminate pro-
gram during run time

Add timer object from toolbar and change the interval property to
desired duration (in ms). Add the code ‘‘App.End’’ under Private
Sub Timer1pTimer().

Programmer wants to track frequency
of behavior

Declare variable in Option Explicit; add the code, ‘‘(variable name)
5 (variable name) 1 1’’ under command button; display value
in text box

Variable values do not transfer across
multiple forms

Add a module, declare variable in Option Explicit on module by
the code ‘‘Public (variable name); delete all declarations on indi-
vidual forms

PDA screen is too small for desired
data collection

Use multiple forms, resize objects, explore the use of ComboBoxes

Gray screen color undesirable Select ‘‘BackColor’’ from properties window, and select the color of
your choice

Border style of form or objects unde-
sirable

Select one of the various options of ‘‘BorderStyle’’ from properties
window

Message appears ‘‘Unable to contact
host device’’ when using the ‘‘Run’’
. . . ‘‘Start Debug’’ sequence

Retry the testing sequence; reboot desktop if necessary (Note: this
is a common problem)

Message appears ‘‘Insufficient memory
to transfer files’’ when using the
‘‘Run’’ . . . ‘‘Start Debug’’ sequence

Retry the testing sequence; reboot desktop if necessary (Note: this
is a common problem)

Cannot find the data file to transfer
into Excel

Use the ‘‘Find Files’’ option; make sure Excel’s file types option ‘‘All
files’’ is selected

Data in Excel all appear in one row Make sure to import data using the ‘‘delimited’’ and ‘‘comma’’ op-
tions in Excel

(eVB) from ‘‘Pocket PC (default device)’’ to
‘‘Pocket PC emulation.’’ This drop-down
menu is located directly underneath the
‘‘window’’ and ‘‘help’’ options on the main
toolbar.

To begin programming, the user must
first click on the ‘‘start’’ button located at the
bottom left corner of the desktop computer
screen. Next the user should click on ‘‘pro-
grams,’’ then on ‘‘Microsoft Embedded Vi-

sual Tools,’’ and finally on ‘‘Embedded Vi-
sual Basic 3.0.’’ eVB is automatically in-
stalled in the download of eVT, which is the
specific programming language that is used
to create the data-collection program. There
are many similarities between both the in-
terface and code of Embedded Visual Basic
3.0 and Microsoft Visual Basic 6.0/Visual
Basic.NET that were designed for desktop
program development. (For information on

275PORTABLE DATA SYSTEM

programming desktop computers with Vi-
sual Basic.NET, readers should refer to Dix-
on & MacLin, 2003.) Once eVB is opened,
a ‘‘new project’’ menu will appear and the
user can select from four options. At this
point, the user should select ‘‘Windows CE
for the Pocket PC’’ and then click ‘‘open.’’

The top panel of Figure 2 displays the
graphic interface of the program. Four
smaller windows appear within the pro-
gram’s main window. One of these smaller
windows is labeled ‘‘Project1’’ and another
is labeled ‘‘Form1.’’ Each program created is
technically called a ‘‘project.’’ The ‘‘Form’’ is
essentially the display that will be projected
on the Pocket PC. Each project may have
more than one form, although the default
setting is for one.

The other two windows are named ‘‘Pro-
ject-Project1’’ and ‘‘Properties-Form1.’’ The
Project-Project1 window contains a file fold-
er with a file entitled ‘‘Form1.’’ It serves as
a visual directory of the contents of the pro-
gram or project. If more forms or files are
added to the project, these would be listed
here as well. The Properties-Form1 window
lists a variety of properties of Form1, in-
cluding the form’s name, color, and size.

An Illustrative Example: Time-Based
Collection Routines

Graphic display set-up. The simplest form
of data collection to program is time based.
Using the Pocket PC, an observer can record
time-based measures such as response dura-
tion, response latency, session duration, and
intertrial intervals. The program can also be
written to prompt the user to record re-
sponses at pre-specified intervals (e.g., every
10 s), which may be useful for time-sam-
pling data-collection procedures.

To the left of the project and form is a
vertical toolbox. The label corresponding to
each tool will appear when the user holds
the pointer over the objects in the toolbox.
To add an object from the toolbox to the

form, the user must click on the type of ob-
ject in the toolbox (e.g., a text box), and
then click on the form. Once the object is
on the form, it may be dragged and its di-
mensions stretched by moving the mouse
pointer to the desired dimensions. For the
purpose of writing a data-collection pro-
gram, one of the more useful objects in the
toolbox is called the ‘‘command’’ button
(represented as a gray rectangle four objects
down on the left side of the toolbox). Com-
mand buttons are useful because they are ob-
jects that, when clicked while a program is
running, will trigger events such as starting
or ending a timer, writing data to file, or
selecting a specific item from a list of op-
tions.

To place a command button (or any other
object) onto the form, the user must first
click on the command button and then
move the cursor onto the form. The mouse
pointer will turn into a small cross. Next,
the user should depress the left mouse but-
ton and hold it down while moving the
mouse to the left or right. The outline of a
box will appear. Moving the mouse (while
still depressing the left button) in any direc-
tion allows adjustment for the size of the
box. When this outline is approximately the
desired size of the command button, the
mouse button should be released. This pro-
cess will add a command button to the
form. Once inserted, the command button
can be resized or moved within the form.

At this point, the Properties-Form1 win-
dow (seen in the lower right corner of the
screen, bottom panel of Figure 2) will have
changed names to ‘‘Properties-Command1’’
because a command button has been added.
As before, the size and location of the com-
mand button can be changed, along with
many other features, through the ‘‘proper-
ties’’ button. Potential changes include the
name, the caption (what text is written di-
rectly on the button), and the color. For ex-
ample, to change the caption to ‘‘begin,’’ the

276 MARK R. DIXON

Figure 2. Screen shots of the graphic interface of eVB and the command buttons and text box for display
of time-based data collection.

277PORTABLE DATA SYSTEM

user would click on the ‘‘caption’’ option,
highlight the existing text (which should
read ‘‘Command1’’ at this point), retype the
word ‘‘begin,’’ and press return. To change
the color of the command button, the user
would first click on ‘‘backcolor’’ and then on
the downward arrow that appears to the
right of this description. Once the desired
color is selected, the user must scroll down
in the Properties-command1 window until
the ‘‘style’’ property appears. To the right of
this text, the user should select the second
option ‘‘vbButtonGraphical’’ and the color
will change. These steps are also used for
adding additional command buttons. To il-
lustrate, the user could insert a second com-
mand button and change its caption to
‘‘end.’’

Also in the toolbox is an object called a
‘‘text box’’ (shown in the toolbox as a white
box with the letters ‘‘ab’’ inside). A text box
can be inserted into the form using the
method described above (for adding a com-
mand button). Once inserted, a rectangular
box with the word ‘‘Text1’’ will appear in
the form. Again, the name of the properties-
command window will change. In this case,
it will read ‘‘Properties-Text1.’’ If the prop-
erties window displays something other than
‘‘Properties-Text1,’’ the user may use the
drop-down menu at the top of this window
and select the object that should be modi-
fied. As with the command button, features
of the text box (e.g., name, color, border
style, and font) can be changed. For the pur-
pose of this example, the user should change
the text to a blank space by clicking on the
Properties-Text1 window, highlighting the
‘‘Text1’’ text next to the ‘‘text’’ property, and
deleting ‘‘Text1.’’ This process will result in
an empty text box on the form. This process
may be repeated to add a second text box.
The lower panel of Figure 2 displays the re-
sulting layout of the form.

Writing code for data collection. Continu-
ing with the example described above, the

user can write the program to create a basic
data-collection program. First, the user will
double-click on the ‘‘begin’’ command but-
ton. This will result in a new window open-
ing over the form that is titled ‘‘Project1-
Form1 (code).’’ This window shows the ac-
tual programming syntax that the computer
reads when the program is run. Initially, the
curser will be flashing underneath a line of
text entitled ‘‘Private Sub Command1p
Click().’’ This refers to a subroutine that the
computer will perform when an observer
clicks on the ‘‘begin’’ command button (de-
veloped above). To write a program that can
be used to calculate response duration, the
user should type the following line of code
on the line directly below ‘‘Private Sub
Command1pClick()’’:

vTime1 5 Timer

This code creates a variable entitled ‘‘v-
Time1’’ (the name of the variable is arbi-
trary) that will be equal to the computer’s
internal clock time (i.e., ‘‘timer’’ in the above
code). Once written, this code will activate
the time when the observer clicks on the
‘‘begin’’ command button.

Additional code is required to deactivate
the timer. This code should be written under
the ‘‘end’’ command button. When the user
double-clicks on the ‘‘end’’ command but-
ton, the ‘‘Project1-Form1 (code)’’ window
will appear, showing the cursor flashing un-
derneath a line of text entitled ‘‘Private Sub
Command2pClick().’’ This refers to a sub-
routine that the computer will perform
when an observer clicks on the ‘‘end’’ com-
mand button. To deactivate the timer, the
following lines of code must be written di-
rectly below ‘‘Private Sub Command2p
Click()’’:

vTime2 5 Timer 2 vTime1
Text1.Text 5 vTime2

This first line of code creates another vari-
able called ‘‘vTime2’’ (again the name of the

278 MARK R. DIXON

variable is arbitrary). However, this variable
must be equal to the difference between the
current computer clock time and the com-
puter clock time when the observer clicked
on the ‘‘begin’’ command button. That is,
the computer must subtract the current
computer time from the variable ‘‘vTime1.’’
The second line of code presents the time-
difference calculation in the empty text box
on the form.

To collect a response-latency measure, ad-
ditional timers are required. Specifically la-
tency will measure the time from the ob-
server clicking the ‘‘end’’ button until the
observer clicks the ‘‘begin’’ button again. To
accomplish this, the user should write the
following line of code under the ‘‘end’’ com-
mand button below the previously written
code:

vTime3 5 Timer

This code allows the program to capture the
current computer time and store it in a var-
iable named ‘‘vTime3.’’ This value may be
displayed in the second text box by typing
an additional two lines of code under the
‘‘begin’’ button below the previously written
code:

vTime4 5 Timer 2 vTime3
Text2.Text 5 vTime4

At this point, response latencies will appear
in the second text box each time the ‘‘begin’’
button is clicked.

Before testing the program, the variables
must be ‘‘declared.’’ This process allows the
computer to recognize the text (e.g., v-
Time1, vTime2) as variables rather than
text. To the right of the text ‘‘Command2’’
directly underneath the window heading of
the ‘‘Project1-Form1 (code)’’ window is a
downward arrow. Clicking on that arrow al-
lows the user to select the option ‘‘(general).’’
Once this option is selected, the following
four lines of code should be written under
the newly displayed text ‘‘option explicit’’:

Dim vTime1
Dim vTime2
Dim vTime3
Dim vTime4

The ‘‘option explicit’’ statement allows the
computer to recognize the variables that will
be used throughout the form. The ‘‘dim’’
statement is short for ‘‘declare.’’ Thus, for
each variable created, the user must have a
corresponding ‘‘dim’’ statement followed by
the variable name under the ‘‘(general)’’ sec-
tion of the program.

Once the variables are declared, the user
can close the ‘‘Project1-Form1 (code)’’ win-
dow and the form will return. The program
is now ready for testing. To test, the user
should click on the ‘‘run’’ option at the top
of the screen and then on the ‘‘start debug’’
option. The program will be transferred to
the Pocket PC (or the emulator software will
start) and the program can be tested.

Data files. For the time-based data to be
written to a data file for later analyses, an-
other object and additional code must be
added to the form. First, a ‘‘file’’ must be
added for data storage. However, this object
is not automatically placed in the toolbox
when the program is initially opened. To
add the file option to the toolbox, the user
must right click the mouse on the vertical
toolbox on the left of the screen. Next, the
user will click on ‘‘components,’’ select ‘‘Mi-
crosoft CE File System Control,’’ and click
‘‘OK.’’ This causes two new objects to ap-
pear in the toolbox. One looks like a file,
and the other looks like a file cabinet. The
left object is the file, and should be added
to the form. The process creates a rectan-
gular box on the form entitled ‘‘file.’’

To open the file automatically when the
program begins, code must be written in the
Project1-Form1(code) window. To access
this window, the user must double-click on
the form instead of one of the command
buttons. The blinking cursor will appear,

279PORTABLE DATA SYSTEM

and the following line of code will be dis-
played:

Private Sub FormpOKClick().

The user must move the cursor to the bot-
tom of this section, to the line after ‘‘end
sub.’’ Next, the user must move the mouse
to the top of the window, click on the down-
ward arrow to the right of the text
‘‘OKClick,’’ and select the ‘‘activate’’ option.
This will add several new lines to the code.
They are:

Private Sub FormpActivate()
End Sub

Between these two lines of text, the follow-
ing line of additional code should be writ-
ten:

File1.Open ‘‘data.txt’’, fsModeAppend

This line of code allows the program to open
a file (arbitrarily named ‘‘data’’) that is a text
file (.txt) and to write the data to this file in
an append fashion. Append means that the
newly collected data will appear in the data
file directly after the previous data. This
storage method allows a running record of
all sessions unless older files are deleted.
From this text file record, the user can cut
or copy the desired selection of data and
paste it in a new file specific for a partici-
pant, date, or session. If the user attempts to
locate this data file on the Pocket PC, it will
be found directly in the ‘‘my documents’’ di-
rectory. However, it may require more search-
ing to locate the file on a PC if the user is
running the PDA emulator. To locate this
file, the user should look in the following
directory: C:\Windows CE Tools\wce300\
MS Pocket PC\emulation\palm300 directory.
If the eVT software has been placed in a dif-
ferent directory during installation, the user
must search in that specific directory.

Once the file option is open and the code
has been written, data are capable of being
stored. For illustrative purposes, the depen-

dent measures are response duration and re-
sponse latency. Because the response dura-
tion will be collected when the user clicks
on the ‘‘end’’ button and response latency
will be collected the next time the ‘‘begin’’
button is clicked, the code for writing data
to file will be written under the ‘‘begin’’ but-
ton. This code is added by clicking on the
downward arrow to the right of the word
‘‘form’’ in the upper left corner of the win-
dow. The user should scroll down until the
‘‘Command1’’ option appears and should se-
lect this option. Once this option is chosen,
the cursor will appear under the ‘‘Private Sub
Command1pClick()’’ text. After the timer
code (vTime4) and before the line ‘‘end
sub,’’ the following text should be typed:

File1.LinePrint vTime2 & ‘‘,’’ & vTime4

This line of code writes the value of vTime2
(the response duration) to a text file followed
by a comma, and then followed by the value
of vTime4 (the response latency). The com-
ma is necessary because it separates these two
values in the data (text) file and allows the
data to be separated into individual rows
when they are imported into graphical and
statistical programs.

To close the file automatically when the
session ends, the following line of code
should be typed:

File1.Close

This code may be placed under a separate
command button called ‘‘exit,’’ or it could
be added to the Private Sub FormpOK
Click() subroutine immediately before the
line of code ‘‘App.End.’’

Minimizing collection errors. Although the
program described above is designed to re-
cord parameters of time accurately, it is not
completely error proof. For example, a user
might accidentally click on the ‘‘begin’’ but-
ton twice, resulting in inaccurate time val-
ues. Another problem may be that the com-
puter may write the data to file twice, dis-

280 MARK R. DIXON

rupting eventual data analysis. These prob-
lems can be eliminated easily.

First, the observer can be prompted as to
which text box corresponds to which type of
response data by adding a ‘‘label’’ object. To
add a label, the user should select the second
object on the right side of the toolbox la-
beled ‘‘label,’’ which resembles a capital let-
ter A. The label is added to the form using
the same procedures described above (for
adding command buttons and text boxes)
and should be placed on the form immedi-
ately above ‘‘Text1.’’ To assist the observer,
the ‘‘caption’’ of the label may be changed
to ‘‘duration’’ using the properties window.
Following this process, another label (for la-
tency) can be added directly above ‘‘Text2.’’

In addition to adding labels, the program
can be written such that the ‘‘begin’’ button
becomes temporarily inoperable once it has
been clicked and can only be turned on
again after clicking the ‘‘end’’ button. Like-
wise, the ‘‘end’’ button can be programmed
to become temporarily inoperable. The pro-
cess for writing this code is as follows. First,
the user should double-click on the ‘‘begin’’
button and enter the following line of code
below Private Sub Command1pClick():

Command1.Enabled 5 False
Command2.Enabled 5 True

This code will turn off or disable the Com-
mand1 button (the ‘‘begin’’ button) when it
is clicked on and will enable the Command2
(‘‘end’’) button. To reactivate the ‘‘begin’’
button and turn off the ‘‘end’’ button after
it has been clicked, the following line of
code must be added directly below Private
Sub Command2pClick():

Command1.Enabled 5 True
Command2.Enabled 5 False

Finally, the user must click once on the
‘‘end’’ button, move to the Properties-Com-
mand2 window, and select the ‘‘enabled’’
property. This property must be changed

from ‘‘true’’ to ‘‘false’’ and will result in the
‘‘end’’ button being disabled upon the initial
start-up of the program. Figure 3 displays
the resulting graphic interface, inputted
code, and properties window.

Saving and transferring work to the Pocket
PC. At this point, a basic time-based data-
collection program has been developed. To
save the collected data, the user must click
on ‘‘file,’’ click on ‘‘save project,’’ and enter
the directory and name that the project will
be saved as. Afterwards, the user should
again click on ‘‘file,’’ click on ‘‘save form,’’
and then enter the directory and name that
the form should be saved as. The form can
be saved under any name.

To transfer the completed data-collection
program from the desktop computer to the
Pocket PC, the user must again click on
‘‘file’’ and then on ‘‘Make Project1.vb.’’ A
window appears that prompts the user to se-
lect a project name and file directory to store
the project in. Once the user makes these
selections and clicks on ‘‘OK,’’ the program
is ready to be transferred to the Pocket PC.
To transfer the program, the communication
software that came with the Pocket PC
should be opened, the ‘‘explore’’ or ‘‘navi-
gate’’ feature should be selected, and the user
will need to find the newly created project
or program, copy it, change directories back
to the Pocket PC, and paste the file into the
Pocket PC’s directory. This process creates a
version of the program on the portable de-
vice that will be ready for data collection. If
the user has tested the program along the
way using the PDA emulator and now at-
tempts to run it from the actual PDA, an
error message may occur. This is because ad-
ditional eVB support files (in addition to the
above-created project) must be placed on the
PDA prior to running. The easiest way to
transfer these support files is for eVB to do
it automatically. The user should test the
program in eVB at least once through the

281PORTABLE DATA SYSTEM

Figure 3. Final graphics and programming code for a time-based data-collection system.

PDA instead of the emulator. Afterwards,
the finished project will run correctly.

Saving Time, Customizing, Troubleshooting,
and a Program

As with other Microsoft products, eVT
allows the user to use many editing shortcuts
similar to those found in other Microsoft
programs. For example, the user can copy
and paste code using the CTRL1C and
CTRL1V key combinations, drag and drop
images, or use CTRL1S to save work. There
are also many customization features for
fonts, line type, text box borders, and so
forth that are located in the ‘‘properties’’
window of eVT and that can be easily ma-
nipulated.

Although the above example illustrates
how to create a data-collection system, pro-
gramming a computer is often difficult.

Many types of bugs or glitches in the process
might occur. Table 1 displays a summary of
potential problems and possible solutions
that might occur when using the eVT sys-
tem.

Downloading Data for Further Analysis

To retrieve the data that have been col-
lected, the file must first be located on the
Pocket PC. It will be entitled whatever it
was named in the ‘‘File1.Open’’ code
(File1.Open ‘‘data.txt,’’ fsModeAppend in
the earlier example). In this example, the
user would locate the file named ‘‘data,’’
which will most likely be placed in the ‘‘my
device’’ directory of the Pocket PC. Al-
though the text file can be previewed
through Microsoft Word on the Pocket PC,
copying the file to the desktop computer will
allow the user to have more flexibility for

282 MARK R. DIXON

Figure 4. Screen shots of data-importing windows and the resulting spreadsheet in Microsoft Excel.

283PORTABLE DATA SYSTEM

data analysis. To paste the file, the user must
open the communication software on the
desktop, click on the options necessary to
locate the Pocket PC’s documents, select the
data file, and copy and paste it in a directory
on the desktop computer.

Many data analyses and graphic genera-
tions can be accomplished using spread-
sheets. Microsoft Excel is one such spread-
sheet that has been previously noted by Carr
and Burkholder (1998) as useful for behav-
ior analysts. To import the data file into Mi-
crosoft Excel, the user must first open the
Excel program. Next, the user should click
on ‘‘file,’’ then on ‘‘open,’’ and then change
the option ‘‘File of type: all Microsoft Excel
files’’ to ‘‘Files of type: all files.’’ It may be
necessary to select the directory the data file
is in and then select the data file. Figure 4
displays the Excel screens for data importing.

A window entitled ‘‘Text Import Wizard’’
will appear. Here the user can select the line
of text in the data file that will be imported,
along with the type of importing method
(delimited or fixed width). The user should
first select the desired first line of data, then
check the ‘‘delimited’’ option, and then click
‘‘next.’’ The next window will prompt the
user to select the type of delimiter that will
separate the data into individual cells in the
Excel worksheet. The ‘‘comma’’ option
should be selected (while deselecting the
‘‘tab’’ option), because a comma was used to
separate the data in the written code (see
above description of writing code for text
files). Finally, the user should click on ‘‘fin-
ish.’’ The data will then appear within the
Excel worksheet for analyses and graphing
(see Carr & Burkholder, 1998, for a guide
to graphing single-subject data using Excel).

If the data require more sophisticated sta-
tistical procedures than a spreadsheet can
compute, they may also be imported into
various statistical programs (e.g., SPSS,
SAS). The import method will be similar to
that for Excel, whereby the user imports a

text file that has comma delimiters. (Refer
to the statistical package owner’s manual for
specific importing procedures of text files.)

SUMMARY

Data collection is a critical component for
developing effective treatment strategies and
demonstrating experimental control (Sulzer-
Azaroff & Mayer, 1991). The use of com-
puterized system that is customized to the
user’s needs may aid in the attainment of
these goals. The programming routine codes
that are presented in the current article are
only a fraction of what is possible with eVB.
However, these routines lay the foundation
for what can be accomplished. Each user can
further integrate the code in a meaningful
way for his or her purposes.

The Pocket PC provides a portable and
powerful platform for recording computer-
ized data, and the Microsoft Embedded Vi-
sual Basic programming language provides
an interface for designing the data-collection
system. Although the eVT software is avail-
able free by download, potential users must
purchase a PDA before using the software.
PDAs differ in price, with the average cost
of a PDA to run eVT being around $200.
However, the combined costs of the software
and the PDA are much less than several of
the programs described by Kahng and Iwata
(1998). Together, the information and the
methods introduced in the current article
provide a basis for designing, customizing,
and using individualized handheld data-col-
lection systems.

REFERENCES

Bellack, A. S., & Hersen, M. (1998). Behavioral as-
sessment (4th ed.). New York: Allyn & Bacon.

Carr, J. E., & Burkholder, E. O. (1998). Creating
single-subject design graphs with Microsoft Ex-
cely. Journal of Applied Behavior Analysis, 31,
245–251.

Dixon, M. R., & MacLin, O. H. (2003). Visual Basic

284 MARK R. DIXON

for behavioral psychologists. Reno, NV: Context
Press.

Emerson, E., Reeves, D. J., & Felce, D. (2000).
Palmtop computer technologies for behavioral ob-
servation research. In T. Thompson, D. Felce, &
F. J. Symons (Eds.), Behavioral observation: Tech-
nology and applications in developmental disabilities
(pp. 47–60). Baltimore: Brookes.

Kahng, S., & Iwata, B. A. (1998). Computerized sys-
tems for collecting real-time observational data.
Journal of Applied Behavior Analysis, 31, 253–261.

Miltenberger, R. G., Rapp, J. T., & Long, E. S.
(1999). A low-tech method for conducting real-
time recording. Journal of Applied Behavior Anal-
ysis, 32, 119–120.

Sulzer-Azaroff, B., & Mayer, G. R. (1991). Behavior
analysis for lasting change. New York: Harcourt
Brace Jovanovich.

Received January 18, 2002
Final acceptance February 19, 2003
Action Editor, Wayne Fisher

